Edge fueling for low recycling and toward improved UEDGE/WBC coupling*

T.D. Rognlien and R.H. Bulmer

Lawrence Livermore National Laboratory

Livermore, CA USA

in collaboration with J.N. Brooks, ANL

Presented at the PFC Meeting Dec. 6-8, 2004 Livermore, CA 94550

^{*} Work performed under the auspices of U.S. DOE by the Univ. of Calif. Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Particle fueling and lithium core-influx are key issues for low-recycling tokamaks utilizing lithium walls

- 1. Hydrogen pumping by lithium creates the need to continuously fuel the tokamak at a high rate compared to the high-recycling regime
 - Does the poloidal location matter?
 - Does the radial location matter?

- 2. Consistent near-sheath (WBC) and whole-edge (UEDGE) coupling requires improved techniques in the non-trace impurity limit
 - Electron density from Li near the wall similar to that from hydrogen
 - UEDGE needs time-dependent Li density everywhere to proceed

UEDGE base-case for Lithium module has a large ion flux across the core boundary - how to supply it?

- Use 2D UEDGE fluid transport with kinetic corrections
- Begin with a basecase with high recycling (shot 109034, Porter)
 - P_{core} = 2 MW
 - D = $0.5 \text{ m}^2/\text{s}$, $\square = 1.5 \text{ m}^2/\text{s}$
 - R = 1.0
 - Wall gas albedo= 0.95
 - Carbon impurity

Radial distance from separatrix (cm)

The magnitude of a gas source at 4 locations locations are compared for the level driving I_{core} -> 0

Four gas injection locations

- Two (a and d) are wall gas puffing from outer and inner midplane walls
- Two others (b and c) are localized midplane sources inside separatrix for a very simple 2D model of deep fueling (pellet or high-speed nozzle)

Resulting gas source for I_{core} = 0

- Wall gas puffs a and d differ by ~1.5, outer best $I_a = 7.2 \text{ kA}$ and $I_c = 4.9 \text{ kA}$
- "Pellet" injections (b,c) show large difference between inner and outer cases:

 $I_b = 13 \text{ kA}$ and $I_c = 1.7 \text{kA}$, near detachment for b

Divertor-plate conditions changes with gas puffing should be favorable to prevent impurity intrusion

NSTX Gas Puff Sensitivity at Outboard Div. Plate

Puff rates: 0, 2500, 4890 A

Part 2: Improving WBC/UEDGE coupling with Li for non-trace Li levels

Approach:

- Interpolate in 2D between WBC and UEDGE data
- mimic WBC Li sputtering by iteratively fitting UEDGE sputtering coefficient
- repeated iteration with WBC

2D interpolation is provided by splines between the WBC mesh and the UEDGE mesh

VERTICAL POSITION (m)

WBC lithium density

Outer divertor region

Powell's new minimization method used to iterate on sputtering coefficients across outer plate

Summary

- Fueling of NSTX by strong gas puffing is a plausible solution, but midplane temperatures are suppressed
- Detailed 2D coupling between UEDGE and WBC is possible, but some issues still need to be worked out, .e.g,
 - difference between meshes, i.e., WBC -> flux-surface mesh
 - irregular sputtering coefficient often observed in UEDGE iteration